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Radiated potentials and fields in isotropic chiral media 
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PA 16802. USA 

Received 16 February 1987 

Abstract. The setting up of a potential theory applicable to isotropic chiral media ( D  = E E  + 
ps0 x E, B = p H  + p r V  x H) by the specification of vector, as well as scalar, magnetic 
and electric potentials is reported here. An infinite medium Green dyadic for these 
potentials is derived and is shown to contain two transverse components as well as a 
longitudinal one. The vector potentials are trirefringent; however, their longitudinal com- 
ponents do not contribute to the field vectors, which are only birefringent. Moreover, the 
vector potentials are axial vectors only for achiral media ( p  = 0). 

1. Introduction 

The lack of geometric symmetry between an  object and its mirror image is referred to 
as chirality [ I ] :  the mirror image of such a chiral object cannot be made to coincide 
with the object itself by any operation involving rotations and/or  translations. The 
most commonly investigated chiral objects are the L- and the D-type stereoisomers so 
familiar to students of organic chemistry. As a garden variety example, the doubly 
enantiomorphic sweetner Nutrasweet, patented by G D  Searle Company, can occur in 
four different forms: of these, the taste of L-aspartyl-L-phenylalanine methyl ester is 
sweet, while that of D-aspartyl-D-phenylalanine methyl ester is bitter; the isomers with 
the L-D or the D-L configurations are tasteless [2]. 

The basis for the difference in the physical properties of the mirror conjugates lies 
in the handedness or the chirality possessed by their microstructures. When an 
electromagnetic disturbance travels through such a medium, it is forced to adapt to 
the handedness of the molecules. In other words, linearly polarised plane waves cannot 
be made to propagate through such a medium, whereas left- and right-circularly 
polarised plane waves, travelling with different phase velocities, are perfectly acceptable 
solutions of the vector wave equation for this class of medium [3]. 

In order to describe the electromagnetic properties of isotropic chiral media, the 
usual constitutive equations, D = E E  and B = p H ,  are inadequate because they admit 
to a single phase velocity, which is generally frequency dependent. Instead we must use 

D = s ( E + p V x E )  ( l a )  

B = p ( H + P V  X H )  (1b) 
which are symmetric under time reversality [4] and duality transformations [ 5 ] ;  p is 
the measure of chirality in (1). The validity of these constitutive equations devolves 
from studies carried out on optically active molecules [6], as well as from the 
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examination of light propagation in optically active crystals [7]. During the last decade 
or so, these constitutive relations have been used to compute the scattering responses 
ofbodies possessed with spherical [8] or circular cylindrical [9] geometries. In addition, 
the authors have explored the interaction of electromagnetic fields with planar achiral- 
chiral interfaces [ 103 as well as with non-spherical chiral objects embedded in achiral 
host media [ 1 1 1 .  

A systematic study of classical electromagnetic field theory in isotropic chiral media, 
however, has been lacking, largely because natural chiral (optically active) media have 
fallen in the province of physical chemists. With modern advances in polymer science, 
there is reason to believe that artificial chiral dielectrics, active at the millimetre-wave 
frequencies, may become feasible. With this motivation, the authors have elsewhere 
[12] obtained the infinite medium Green dyadic, as well as Huyghens’ principle for 
the electric and the magnetic fields in isotropic chiral media, and employed them to 
set up and investigate a pertinent scattering formalism. As part of their ongoing efforts 
to understand the electromagnetic waves with chiral media, the authors report here 
the setting up of a pertinent potential theory by the specification of vector as well as 
scalar, magnetic and electric potentials. An infinite medium Green dyadic for these 
potentials will also be derived and expressions for the radiated potentials and fields 
will be examined. 

2. Specification of potentials 

Let an isotropic chiral medium occupy the unbounded source-free region V. The third 
Maxwell’s equation, C x E = iwB, can be seen to be completely satisfied by a vector 
magnetic potential A and a scalar electric potential V, specified by the relations 

H = t L - l ~  x A 

E = i w ( A  + P V  x A )  - V V 

D = i w ~ ( A + 2 / 3 V  x A + P 2 V  X V  x A )  - E V V  

B = V  x ( A + P V  x A ) .  

( 2 a )  

( 2 6 )  

subject to the constitutive equations (1). Furthermore, 

( 3 a )  

(36)  

Next, by using ( 2 a )  and ( 3 a )  in the fourth Maxwell’s equation, C x H = -iwD, the 

(4) 

is found to hold in V, where y 2  = k2( 1 - k 2 P 2 ) - ’  and k 2  = w2+ Provided the gauge 
condition 

( 5 )  

is satisfied, A and “Y- can be separated from each other and can be shown to satisfy 
the homogeneous governing differential equations 

( 6 a )  

equation 

V 2 A + 2  y2PV x A +  y 2 A  -V[V A - i (  y 2 / w )  VI = 0 

i w p V  - (k/y)’V - A = 0 

V2A+2y2/3V x A +  y 2 A  = 0 

(VZ+y2)V=O.  (66) 
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In  a similar fashion, the fourth Maxwell’s equation, V x H = -iwD, can be com- 
pletely satisfied by a vector electric potential F and a scalar magnetic potential W, 
which are specified by the relations 

E = & - I C  x F 

H = - i w ( F + p V x F ) + V W  

B = - iwp(F+2pV x F+P*V X V  x F ) + p V  W 

D = V x (F+PV x F ) .  

Again, provided the gauge condition 

i w p  W - ( k /  y ) %  F = 0 (9) 

holds, F and W can also be shown to satisfy the homogeneous governing differential 
equations 

V 2 F + 2 y 2 P G x F +  y’F=O 

( V 2 + y 2 ) W = 0 .  

3. Radiated potentials 

Let now an electric current density J be impressed on some bounded volume inside 
Yr. On using the equations 

V x E = i w B  

V x H = - - i w D +  J 

it can then be shown that the radiated magnetic potential A in the source-free portion 
of 2’ is governed by the relation 

V2A +27’/3V x A + Y’A = - p ( y /  k)*J. (12) 
Likewise, if a magnetic current density K is radiating, then 

G x E = i w B -  K 

V x H = -iwD (136) 
and the radiated electric potential F in the source-free portion of Y. has to be computed 
from the relation 

C 2 F + 2 y ’ P V x F +  y 2 F = e ( y / k ) ‘ K .  i 14) 

[c‘;S + y 2 J  + 2 y 2 ~ y  x 31 % ( r ,  r ’ )  = - s t i ( r  - r ’ )  

The solutions of (12), as well as of (14), require the derivation of a Green dyadic, 
Bl(r, r’), which itself is the solution of the equation 

i15) 
3 being the unit dyadic. In order to evaluate % ( r ,  r ‘ ) ,  the three-dimensional Fourier 
transforms 

d’p a(  p ?  exp[ ip ( r - r ‘ ) ]  ( 1 6 ~ )  SSL ?[(  r, r ’ )  = ( 2 . ~ ) - ~  

6 ( r -  r ’ )  = ( 2 ~ ) - ~  d3p exp[ip ( r  - r ’ ) ]  (166) 
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are utilised in ( 1 9 ,  yielding thereby the dyadic relation 

[ ( y Z - p 2 ) S + 2 i y 2 ~ p x 3 I  - a ( p ) =  -3. 
The solution of ( 1 7 )  can then be found from dyadic algebra [ 131 and is given as 

a ( p )  = [ ( p 2 -  y 2 ) ( p 2 -  r 3 ( p 2 -  Y ~ - ’ ( - ~ Y ~ P ~ ) P P  

where y l  = k ( l  - k P ) - ’  and y 2 =  y 2 / y ,  = k ( l +  kp1-I .  

+ [ ( P 2 - Y : ) ( P 2 - Y : ) I - I [ ( P 2 - Y 2 ) ~ + i 2 Y 2 P p X 3 1  (18) 

On taking the inverse Fourier transform of ( 1 8 ) ,  vide ( 1 6 a ) ,  it is easy to show that 

87r3?1(r, r ‘ ) =  3 K , + 2 y 2 P V  x 3 K 2 + 4 y 4 P 2 V V K 3  ( 1 9 )  

in which the integrals 

and R = r - r’.  The evaluation of these integrals must be done in the upper half of the 
complex plane. Note that the integrands of both K ,  and K 2  contain singularities at 
p = * y , ,  * y 2 ,  while that of K3 contains yet another singularity at p = i y ;  of these six 
singularities, three have to be excluded because of the chosen time dependence 
exp( - i d ) .  Therefore, after using Cauchy’s residue theorem to evaluate the three 
integrals, the expression for the dyadic a( r, r‘) turns out to be 

a(r, r’) = ( k / 8 7 r y 2 ) (  Y I S  + Y;’VV + V x 3)g( 71; R )  

+ ( ~ / ~ T Y ’ ) ( Y z : +  Y;’VV -V X 3 ) g ( Y , ;  R )  - ( 1 / 4 ~ y 2 ) V V g ( y ;  R )  

where g ( a ;  R )  =exp(iaR)/R.  Note that when P = O  (achiral media), then 
simplifies to the usual expression [ 1 4 ]  

%( r, r’) = ( 1 / 4 r ) s g (  k ;  R).  

Once the dyadic %(r,  r’) has been derived, the radiated vector potentials 
source-free part of 7’- can be easily evaluated from the integrals 

A ( r ) = + ( y / k ) 2 \ \ \  d 3 x ’ a ( r , r ‘ )  * J ( r ’ )  

F ( r ) = - E ( y / k ) 2  j[[ d 3 x ’ a ( r , r ‘ ) . K ( r ’ )  
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in which the integrations are performed over the volumes containing the respective 
source current densities. The corresponding scalar potentials can then be obtained 
from the gauge conditions (5) and ( 9 ) ,  if needed. 

4. Radiated fields 

The radiated fields E and H themselves satisfy the inhomogeneous equations 

V x V  x E -2y’PV x E - y 2 E  = i w p ( y /  k ) * ( J + P V  x J )  - ( y / k ) ’ ( V  x K )  ( 2 3 ~ )  

( 2 3 b )  V X V  x H -2y’PV x H - y 2 H  = i m ( y / k ) ’ ( K  +PV x K ) + ( y / k ) ’ ( V  x J )  

the solutions of which require the evaluation of the Green dyadics, @( r, r’)  and @( r, r’) ,  
which, respectively, satisfy the dyadic relations 

(-vv + v23 + y 2 S  + 2 y ’ ~ 0  x 3) - @(r, r ’ )  = - z S ( r  - r’) 

( - v v + v ’ ~ +  y ’ z + 2 y 2 ~ ~  x z) * @(r ,  r’) = -V x Z s ( r -  r ’ ) .  

( 2 4 0 )  

( 2 4 6 )  

The solution procedure for ( 2 4 a )  is the same as for (15),  and the final result can 
be stated as [I21 

W r ,  r’)  = ( k / 8 n - y 2 ) ( y 1 3 +  y;’VV+V x S)g(y l ;  R )  

+ ( k / 8 r y 2 ) ( y 2 S +  Y ; ’ V V - V X ~ ) ~ ( Y ~ ;  R ) .  ( 2 5 a )  

On the other hand, @(r, r’)  need not be explicitly calculated: inspection of ( 2 4 6 )  with 
respect to ( 2 4 a )  leads to the establishment of the identity 

@( r, r’) = V x a( r, r‘). 

%(r ,  r’) = a( r, r’) - ( 1/4n-y2)VVg(  y ;  R )  

( 2 5 6 )  

Furthermore, while, by comparing (21 a )  with ( 2 5 a ) ,  the relation 

( 2 6 a )  

can be obtained, it should be noted that, because the second term on the right-hand 
side of ( 2 6 a )  is irrotational, 

V ~ % ( r , r ‘ ) = V ~ @ ( r , r ’ ) .  ( 2 6 b )  

Whether from ( 2 ) ,  (7) and ( 2 2 ) ,  or from (23 )  and ( 2 5 ) ,  the radiation fields in the 
source-free part of Y.  can be computed via the relations 

E ( r ) = i w p ( y / k ) ’  d3x’( 2 + PV x 2) * a( r, r ’ )  J (  r’) 

+ ( y / k ) ’ J  J J d 3 x ’ ( V x 3 )  * ~ ( r ,  r’) J ( r ’ )  

in which the integrations are performed over the volumes containing the source current 
densities. 
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5. Discussion 

The immediate consequence of the expression ( 2 5 a )  for @ ( r ,  r’)  is that the electromag- 
netic field vectors must exhibit birefringence, vide the wavenumbers y1 and y?,  in an  
isotropic chiral medium. Waves traversing with a phase velocity U /  y, are left-circularly 
polarised ( LCP), while the wavenumber y2 is associated with the right-circularly 
polarised (RcP) waves. In  an  unbounded chiral medium, the LCP and the RCP waves 
can propagate without interfering with each other, one of them having a slower phase 
velocity than the other. But when a wave of either polarisation encounters a boundary, 
mode conversion takes place; the scattered field then consists, in general, of waves of 
both polarisations [8-111. Unattenuated propagation of both the LCP and the RCP 

waves occurs provided both k and p are real. If Im( k )  + lk12 Im(j3 j = 0, y,  is real and 
LCP waves traverse the chiral medium without losing any energy. O n  the other hand, 
if Im( k )  - / k l z  I m ( p )  = 0,  y2 is real and RCP waves propagate in the medium without 
suffering any attenuation. It need hardly be mentioned that a linearly polarised plane 
wave cannot travel in an  isotropic chiral medium, except in the limiting case of j3 = 0. 

Whereas the electromagnetic field vectors simply exhibit birefringence, it turns out 
to be quite surprising to observe that the potential vectors, A and F, are trirefringent. 
From ( 2 1  a ) ,  ?I is comprised of three components, each having a different wavenumber- 
y l ,  y2 and  y = ( ~ ~ y ~ ) ” * - b u t  all three being of order O( 1/ R )  in the limit R + 30. The 
first two components of QI are solenoidal, leading to the identity (26b) ;  the third one, 
however, having phase velocity w /  y, is purely longitudinal and does not contribute to 
the radiated E and If, which are solenoidal whatever the value of p. Incidentally, y 
is a valid wavenumber for the potentials, as shown by the homogeneous differential 
equations ( 6 b )  and ( l o b )  to which, respectively, the scalar potentials V and W must 
conform. Finally, A and F are not axial vectors for p # 0; consequently, and because 
the solenoidal part of ‘3 precisely equals a, the calculation of the radiated electromag- 
netic fields in isotropic chiral media through A and F is as simple or difficult as a 
direct calculation through (3. 
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